Hierarchical semantic segmentation using modular convolutional neural networks

نویسنده

  • Sagi Eppel
چکیده

Image recognition tasks that involve identifying parts of an object or the contents of a vessel can be viewed as a hierarchical problem, which can be solved by initial recognition of the main object, followed by recognition of its parts or contents. To achieve such modular recognition, it is necessary to use the output of one recognition method (which identifies the general object) as the input for a second method (which identifies the parts or contents). In recent years, convolutional neural networks have emerged as the dominant method for segmentation and classification of images. This work examines a method for serially connecting convolutional neural networks for semantic segmentation of materials inside transparent vessels. It applies one fully convolutional neural net to segment the image into vessel and background, and the vessel region is used as an input for a second net which recognizes the contents of the glass vessel. Transferring the segmentation map generated by the first nets to the second net was performed using the valve filter attention method that involves using different filters on different segments of the image. This modular semantic segmentation method outperforms a single step method in which both the vessel and its contents are identified using a single net. An advantage of the modular neural net is that it allows networks to be built from existing trained modules, as well the transfer and reuse of trained net modules without the need for any retraining of the assembled net.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Deep Context Convolutional Neural Networks for Semantic Segmentation

Recent years have witnessed the great progress for semantic segmentation using deep convolutional neural networks (DCNNs). This paper presents a novel fully convolutional network for semantic segmentation using multi-scale contextual convolutional features. Since objects in natural images tend to be with various scales and aspect ratios, capturing the rich contextual information is very critica...

متن کامل

Brain Tumor Segmentation Based on Refined Fully Convolutional Neural Networks with A Hierarchical Dice Loss

As a basic task in computer vision, semantic segmentation can provide fundamental information for object detection and instance segmentation to help the artificial intelligence better understand real world. Since the proposal of fully convolutional neural network (FCNN), it has been widely used in semantic segmentation because of its high accuracy of pixel-wise classification as well as high pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.05126  شماره 

صفحات  -

تاریخ انتشار 2017